

higher education & training

Department:

Higher Education and Training REPUBLIC OF SOUTH AFRICA

T830(E)(J22)T AUGUST 2010

NATIONAL CERTIFICATE

INDUSTRIAL ELECTRONICS N5

(8080175)

22 July (X-Paper) 09:00 - 12:00

Calculators may be used.

This question paper consists of 5 pages and a 6-page formula sheet.

DEPARTMENT OF HIGHER EDUCATION AND TRAINING REPUBLIC OF SOUTH AFRICA

NATIONAL CERTIFICATE INDUSTRIAL ELECTRONICS N5 TIME: 3 HOURS MARKS: 100

INSTRUCTIONS AND INFORMATION

- Answer ALL the questions.
- 2. Read ALL the questions carefully.
- Number the answers correctly according to the numbering system used in this
 question paper.
- 4. ALL the calculations MUST be shown.
- 5. ALL sketches and diagrams MUST be labelled and neat.
- 6. Keep questions and subsections of questions together.
- 7. Write neatly and legibly.

QUESTION 1: ALTERNATING CURRENT THEORY

- 1.1 Which factors determine the capacitance of a capacitor? 1.2 (3)
- Why is the differentiator called a high-pass filter? 1.3 (2)
- Refer to FIGURE 1 below and calculate the following:

FIGURE 1

- 1.3.1 The total impedance Z_T (Write the answer in polar form.) 1.3.2 (7)
- The current value in each branch of the circuit

(8)

[20]

QUESTION 2: POWER SUPPLIES

2.1 Calculate the value of a second capacitor in the RC- π -filter circuit, if the following values are known:

$$f = 50$$
 Hz before full-wave rectification; $V_{r(rms)} = 1.8 \text{ V}$ and $R = 1.5 \text{ k}\Omega$ $V_{r(rms)} = 0.8 \text{ V}$; (6)

- Draw a neat, labelled block diagram of a power source, which can supply both 2.2 positive and negative voltages to operational amplifiers.
- 2.3 Briefly define the term voltage regulation.

(1)

(6)

[13]

(4)

(2)[15]

(1)

[9]

QUESTION 3: TRANSISTOR AMPLIFIERS

The following values of a fixed voltage biased amplifier are known: 3.1

 V_{CC} = 12 V; I_{C} = 5 mA; V_{Ce} = 6 V; V_{BE} = 0,6 V; β = 200

Calculate the following:

$$R_{C} = R_{C} = R_{B} = R_{C} = R_{C$$

A fixed forward biased voltage amplifier has the following information: 3.2

$$h_{ie} = 1.2 \text{ k}\Omega$$
 $h_{re} = 2 \times 10^{-4}$ $h_{oe} = 60$ $h_{oe} = 20 \text{ μV/A}$ $R_{c} = 2 \text{ k}\Omega$

Calculate the following, according to the precision method:

- 3.2.1 The input impedance of the transistor 3.2.2 The current gain of the amplifier (3)The voltage gain of the amplifier (2)3.2.3 (2)
- 3.3 Name any TWO types of distortions that can appear in common emitter amplifiers.

QUESTION 4: OPERATIONAL AMPLIFIERS

- 4.1 Indicate whether the following statements are TRUE or FALSE. Choose the answer and write only 'true' or 'false' next to the question number (4.1.1 - 4.1.2) in the ANSWER BOOK.
 - An active filter needs a power supply 4.1.1 An operational amplifier has a high open loop gain 4.1.2 (1)
- 4.2 Draw a neat, labelled circuit diagram of a practical operational amplifier which is connected as a differentiator. (3)
- 4.3 Calculate the value of the capacitor in QUESTION 4.2 if R_{F} = 2 $k\Omega$ and the frequency (f) = 500 Hz. (4)

TOTAL:

100

QUESTION 5: INTEGRATED CIRCUITS What is the output voltage of a 7812-voltage regulator? (1) 5.1 Show, by means of a neat, labelled sketch, how the terminals of a 7812-5.2 (3)voltage regulator should be connected. [4] **QUESTION 6: TRANSDUCERS** Make a freehand drawing of the Hall effect displacement transducer. (6)6.1 Briefly explain the operating principle of a transmitter/receiver system that 6.2 (5)makes use of an infra-red diode and a photo-diode. [11] QUESTION 7: ELECTRONIC PHASE CONTROL Draw a neatly labelled block diagram of a general closed-loop system and briefly [9] describe how the load condition is kept constant. **QUESTION 8: TEST EQUIPMENT** Illustrate by making use of a 4-bit binary code, how a successive approximation A/Dconverter would measure an initial unknown voltage of 13 volts. [5] **QUESTION 9: OSCILLATORS** 9.1 Calculate the frequency of a uni-junction transistor-oscillator if: (2) $R = 15 k\Omega$ and $C = 10 \mu f$ Design a neat, labelled A-stable multivibrator circuit that consists of two 9.2 resistors, a 200 µf capacitor, a 555-timer, an NPN-transistor and a normally open relay. The relay must be switched on (thigh) for 30 seconds and off (tlow) for 15 seconds. (12)Calculate the values of the resistors and draw the circuit diagram. [14]

$$\frac{1}{Z_T} = \frac{1}{R} - j \left(\frac{1}{X_L} - \frac{1}{X_C} \right)$$

$$I_T = I_R - j(I_L - I_C)$$

$$a + jb = \sqrt{a^2 + b^2} / \tan^{-1} \frac{b}{a} = r / \underline{\theta}$$

$$r/\underline{\theta} = r(\cos\theta + j\sin\theta)$$

$$f = \frac{1}{2\pi} \sqrt{\frac{1}{LC} - \frac{R^2}{L^2}}$$

$$V_{rms} = \frac{1}{\sqrt{2}} V_m = 0,707 V_m$$

$$\frac{V_P}{V_S} = \frac{N_P}{N_S} = \frac{I_S}{I_P}$$

$$PIV = V_m$$

$$R_{r(rms)} = 0.385 V_m$$

$$r = \frac{V_{r(rms)}}{V_{dc}}$$

$$V_{dc} = V_m - \frac{V_{r(p-p)}}{2}$$

$$V_{dc} = V_m - \frac{I_{dc}}{2 fC}$$

$$V_{r(rms)} = \frac{I_{dc}}{2\sqrt{3}fC} = \frac{V_{dc}}{2\sqrt{3}fCR_I}$$

$$r = \frac{I_{dc}}{2\sqrt{3} fCV_{dc}} = \frac{1}{2\sqrt{3} fCR_L}$$

$$V'_{dc} = \frac{R_L}{R + R_I} \cdot V_{dc}$$

$$X_C = \frac{1}{2\pi fC} \qquad X_C = \frac{1}{4\pi fC}$$

$$V'_{r(rms)} = \frac{X_C}{R} \cdot V_{r(rms)}$$

$$I_T = \frac{V}{R} - j \left(\frac{V}{X_L} - \frac{V}{X_C} \right)$$

$$Q = \tan \theta$$

$$Z_d = \frac{L}{CR_1}$$

$$V_{dc} = \frac{2}{\pi} V_m = 0.637 V_m$$

$$V_{dc} = \frac{1}{\pi} V_m = 0.318 V_m$$

$$PIV = 2 V_m$$

$$V_{r(rms)} = 0.305 V_m$$

$$V_{r(rms)} = \frac{V_{r(p-p)}}{2\sqrt{3}}$$

$$V_{dc} = V_m - \frac{I_{dc}}{4 \, fC}$$

$$V_{r(rms)} = \frac{I_{dc}}{4\sqrt{3}fC} = \frac{V_{dc}}{4\sqrt{3}fCR_{r}}$$

$$r = \frac{I_{dc}}{4\sqrt{3}fCV_{dc}} = \frac{1}{4\sqrt{3}fCR_{c}}$$

$$V'_{r(rms)} = \frac{X_C}{\sqrt{R^2 + X_C^2}} \cdot V_{r(rms)}$$

$$r' = \frac{V'_{r(rms)}}{V'_{dc}}$$

$$r' = rX_C \left(\frac{R + R_L}{R.R_I} \right)$$

INDUSTRIAL ELECTRONICS N5

FORMULA SHEET

$$\begin{split} I &= \frac{V}{R} \\ V_T &= V_1 + V_2 + V_3 + \dots = I_1 R_1 + I_2 R_2 + I_3 R_3 + \dots \\ I_T &= I_1 + I_2 + I_3 + \dots = \frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} + \dots \end{split}$$

$$V_R = RC \frac{dv}{dt}$$

T = RC

$$X_L = 2\pi f L$$

$$Z = R + jX_L$$

$$Z = R + j(X_L - X_C)$$

$$V_R = I_T R$$

$$V_C = I_T(-jX_C)$$

$$Q = \frac{V_L}{V_T} = \frac{V_C}{V_T} = \frac{X_L}{R} = \frac{X_C}{R} = \frac{1}{R} \sqrt{\frac{L}{C}} = \frac{f_r}{f_2 - f_1}$$

$$BW = f_2 - f_1$$

$$Z_T = \frac{Z_2 Z_2}{Z_1 + Z_2}$$

$$Z_T = \frac{R(jX_L)}{R + jX_L}$$

$$I_T = I_R - jI_L$$

$$Z_T = \frac{R(-jX_C)}{R - jX_C}$$

$$I_T = I_R + jI_C$$

$$P = IV = I^2 R = \frac{V^2}{R}$$

$$T = \frac{L}{R}$$

$$V_C = \frac{1}{RC} \int v_i dt$$

$$X_C = \frac{1}{2\pi fC}$$

$$Z = R - jX_C$$

$$I_T = \frac{V_T}{Z_T}$$

$$V_L = I_T(jX_L)$$

$$f_r = \frac{1}{2\pi\sqrt{LC}}$$

$$\frac{1}{Z_T} = \frac{1}{Z_1} + \frac{1}{Z_2}$$

$$I_T = I_1 + I_2 = \frac{V}{Z_1} + \frac{V}{Z_2}$$

$$\frac{1}{Z_T} = \frac{1}{R} - \frac{j}{X_L}$$

$$I_T = \frac{V}{R} - j\frac{V}{X_I}$$

$$\frac{1}{Z_T} = \frac{1}{R} + \frac{j}{X_C}$$

$$I_T = \frac{V}{R} + j \frac{V}{X_C}$$

$$V'_{dc} = V_{dc} - I_{dc}R_1$$

$$V'_{r(rms)} = \frac{V_{r(rms)}}{(2\pi f)^2 LC}$$

$$VR = \frac{V_{NL} - V_{FL}}{V_{FL}}$$

$$2V_m = V_{c2} = V_m + V_{c1}$$

$$S = \frac{\Delta V_o}{\Delta V_i}$$

$$R_{s(\min)} = \frac{V_{i(\max)} - V_z}{I_{z(\max)}}$$

$$R_{L(\min)} = \frac{V_Z}{V_{i(\max)} - V_Z} \cdot R_S$$

$$R_c = \frac{V_{cc} - V_{ce}}{I_c}$$

$$\beta = \frac{I_c}{I_b}$$

$$V_e = \frac{V_{cc}}{10}$$

$$R_c = \frac{V_{cc} - V_{ce} - V_e}{I_c}$$

$$R_{b1} = \frac{R_{b2}(V_{cc} - V_b)}{V_b}$$

$$V_b = V_e + V_{be}$$

$$V_{be} = h_{ie}i_b + h_{re}V_{ce}$$

$$A_i = \frac{h_{fe}}{1 + h_{oe} Z_L}$$

$$A_i = \left(\frac{h_{fe}}{1 + h_{oe}Z_L}\right) \left(\frac{R_bT}{R_{bT} + Z_1}\right) \left(\frac{R_c}{R_c + R_L}\right)$$

$$A_{v} = \frac{-h_{fe} Z_{L}}{h_{ie} + (h_{ie} h_{oe} - h_{fe} h_{re}) Z_{L}}$$

$$Z_1 = h_{ie} - \frac{h_{fe}h_{re}Z_L}{1 + h_{oe}Z_L}$$

$$V_{dc} = \frac{R_L}{R_L + R_1} \cdot V_{dc}$$

$$V'_{r(rms)} = \frac{V_{r(rm)}}{(4\pi f)^2 LC}$$

$$\%VR = \frac{V_{NL} - V_{FL}}{V_{FL}} \times 100$$

$$3V_m = V_{c1} + V_{c3} = V_m + 2V_m$$

$$V_R = V_i - V_z$$

$$I_z = \frac{P_z}{V_z}$$

$$V_o = V_r - V_{be}$$

$$R_b = \frac{V_{cc} - V_{be}}{I_b}$$

$$C_e \geq \frac{10}{2\pi f R_e}$$

$$R_e = \frac{V_e}{I_e} \simeq \frac{V_e}{I_c}$$

$$R_b = \frac{V_{cc} - V_{be} - V_e}{I_b}$$

$$R_{b2} = \frac{1}{10} \, \beta R_e$$

$$i_c = i_{fe}i_b + h_{oe}V_{ce}$$

$$A_i=h_{fe}$$

$$A_{v} = \frac{-h_{fe}Z_{L}}{h_{ie}}$$

$$Z_1 = h_{ie}$$

$$Z_2 = \frac{1}{h_{oe} - \frac{h_{fe}h_{re}}{h_{ie} + R_s}}$$

$$Z_2 = \frac{1}{h_{oe}}$$

$$A_p = \frac{A_i^2 R_L}{R_1} = -A_v A_i$$

$$A_p = \frac{{h_{fe}}^2 R_L}{h_{ie}}$$

$$Z_0 = R_C // R_L // Z_2 = Z_L // Z_2$$

$$Z_0 = R_C // Z_2 = Z_L // Z_2$$

$$Z_1 = R_b // Z_1$$

$$Z_i = R_{b1}^{+} // R_{b2} // Z_1$$

$$I_1 = \frac{R_{bT}I_i}{R_{bT} = Z_1}$$

$$I_0 = h_{fe}I_b = h_{fe}\left(\frac{R_{b2}(I_i)}{R_{b2} + h_{ie}}\right)$$

$$A_i = \frac{I_0}{I_1}$$

For common base, substitute all the 'e' subscripts with a 'b' in the h-parameters.

$$Z_L = R_c // R_L$$

$$I_1 = \frac{R_e I_i}{R_a + Z_1}$$

$$CMRR = \frac{A_{dm}}{A_{cm}}$$

$$CMRR(dB) = 20log \frac{A_{dm}}{A_{cm}}$$

$$I_e = \frac{V_e}{R_e}$$

$$I_c = \frac{I_e}{2}$$

$$R_L = \frac{V_{R_L}}{I_C}$$

$$g_m R_L = \frac{h_{fe}}{h_{ie}} \cdot R_L$$

$$V_0 = -\left(\frac{R_f}{R_1}\right). V_i$$

$$V_0 = \left(\frac{R_f}{R_1} + 1\right). V_i$$

$$V_0 = -\left(\frac{1}{R_1}\right) \cdot V_i$$

$$V_0 = -\left(\frac{R_f}{R_1} \cdot V_1 + \frac{R_f}{R_2} \cdot V_2 + \frac{R_f}{R_3} \cdot V_3\right) \quad V_0 = -\left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3}\right) R_f$$

$$V_0 = -(V_1 + V_2 + V_3)$$

$$V_0 = -(I_1 + I_2 + I_3) R_f$$

$$V_0(t) = -\frac{1}{RC} \int V_i(t)$$

$$V_0(t_b) = -\frac{1}{RC} \int_a^b V_i(t_b) + V_c(t_a)$$

$$t = \frac{1}{f}$$

$$A_{v} = -\frac{R_{s}}{R_{1}}$$

$$R_2 = \frac{R_1 R_s}{R_1 + R_s}$$

$$f_c = \frac{1}{2\pi R_c C}$$

$$V_0(t) = -RC\frac{dV_i(t)}{dt}$$

$$A = -\frac{R_f}{R_s}$$

$$t = R_f C$$

$$V_0 = \frac{R_f}{R_s} (V_2 - V_1)$$

$$f_0 = \frac{1}{2\pi\sqrt{C_1C_2R_1R_2}}$$

$$f_0 = \frac{1}{2\pi\sqrt{L_T C_1}}$$

$$f_0 = \frac{1}{2\pi\sqrt{LC_T}}$$

$$f_0 = \frac{1}{2\pi\sqrt{LC_2}}$$

$$f_0 = \frac{1,5}{RC}$$

$$t_1 = 0.7 R_2 C_1$$

$$f_0 = \frac{1}{1,4RC}$$

$$t = 1,1 RC$$

$$t_{low} = 0.693 (R_B)C$$

$$t_T = t_{low} + t_{high}$$

$$\sigma = \Delta l/l$$

$$\sigma = \frac{S}{E}$$

$$A = \frac{R_f}{X_c}$$

$$V_0(t) = -R_f C \frac{d}{dt} \cdot v_i \sin \omega t$$

$$V_0 = A(V_r - V_i)$$

$$V_0 = V_2 - V_1$$

$$f_0 = \frac{1}{2\pi RC}$$

$$L_T = L_1 + L_2 + 2M$$

$$C_T = \frac{C_1 C_2}{C_1 + C_2}$$

$$f = \frac{1}{2\pi RC\sqrt{6}}$$

$$f_0 = \frac{1}{t} = \frac{1}{t_1 + t_2}$$

$$t_2 = 0.7 R_1 C_2$$

$$V_i = I_{c2}R_e + V_{be(ON)}$$

$$f_0 = \frac{1,443}{(R_A + 2R_R)C}$$

$$t_{high} = 0,693 (R_A + R_B) C$$

$$K = \frac{\Delta R / R}{\Delta l / l}$$

$$R = \rho \frac{1}{\pi d^2 / 4}$$

$$Resolution = \frac{1}{amount \ of \ turns}$$

$Resolution = \frac{voltage \ drop \ across \ adjacent \ turns}{total \ voltage \ drop}$

$$R_t = Ae^{B/T}$$

$$V_A = \frac{R_2}{R_1 + R_2} \cdot V_T$$

$$V_{AB} = V_A - V_B$$

$$V_{Hall} = kIH$$

$$T = 273 + {}^{\circ}C$$

$$V_B = \frac{R_t}{R_t + R_3} \cdot V_T$$

$$A_{v} = \frac{V_{0}}{V_{i}}$$

